Refine Your Search

Topic

Author

Search Results

Technical Paper

Risk Mitigation Water Quality Monitor

1997-07-01
972463
On the International Space Station (ISS), atmospheric humidity condensate and other waste waters will be recycled and treated to produce potable water for use by the crews. Space station requirements include an on-orbit capability for real-time monitoring of key water quality parameters, such as total organic carbon, total inorganic carbon, total carbon, pH, and conductivity, to ensure that crew health is protected for consumption of reclaimed water. The Crew Health Care System for ISS includes a total organic carbon (TOC) analyzer that is currently being designed to meet this requirement. As part of the effort, a spacecraft TOC analyzer was developed to demonstrate the technology in microgravity and mitigate risks associated with its use on station. This analyzer was successfully tested on Shuttle during the STS-81 mission as a risk mitigation experiment. A total of six ground-prepared test samples and two Mir potable water samples were analyzed in flight during the 10-day mission.
Technical Paper

Chemical Analysis of Potable Water and Humidity Condensate Collected During the MIR-21 Mission

1997-07-01
972462
The primary source of potable water planned for the International Space Station will be generated from the reclamation of humidity condensate, urine, and hygiene waters. It is vital to crew health and performance that this reclaimed water be safe for human consumption, and that health risks associated with recycled water consumption be identified and quantified. Only recently has data been available on the chemical constituents in reclaimed waters generated in microgravity. Results for samples collected during Mir-21 reveal that both the reclaimed water and stored water are of potable quality, although the samples did not meet U.S. standards for total organic carbon (TOC), total phenols, and turbidity.
Technical Paper

Capillary Electrophoresis for Spacecraft Drinking Water Analysis: Methods and Breadboard Development

1997-07-01
972464
This report describes the first two parts of a three-phase project to develop and test a spacecraft-compatible capillary electrophoresis (CE) instrument. This instrument is designed to monitor the quality of recycled potable water aboard spacecraft such as the International Space Station. Phase I involved selecting and validating methods for low mass-to-charge ratio (m/z) cations and anions by using a slightly modified commercial CE instrument as a model. The analytical performance of several published CE methods was assessed for their ability to detect targeted anions and cations listed in a NASA water quality standard. Direct and indirect UV absorption detection at a single wavelength (214 nm) was used, and separation selectivity and sensitivity were optimized at the expense of analysis time. Phase II focused on building a breadboard CE instrument and flight-testing it on NASA's KC-135 parabolic aircraft.
Technical Paper

Potable Water Treatment and Transfer from Shuttle to Mir

1997-07-01
972461
To satisfy a requirement to supply water to Mir station, a process for treating iodinated water on the Shuttle was developed and implemented. The treatment system consists of packed columns for removing iodine and a syringe-based injection system for adding ionic silver, the biocide used in Mir water. Technical and potable grade water is produced and transferred in batches using collapsible 44-liter contingency water containers (CWCs). Silver is added to the water via injection of a solution from preloaded syringes. Minerals are also added to water destined for drinking. During the previous four Shuttle-Mir docking missions a total of 2781 liters (735 gallons) of water produced by the Shuttle fuel cells was processed using this method and transferred to Mir. To verify the quality of the processed water, samples were collected during flight and returned for chemical analysis.
Technical Paper

An Advanced Water Recovery Program

1996-07-01
961336
This paper reviews designs of urine distillation systems for spacecraft water recovery. Consideration is given to both air evaporation and vacuum distillation cycles, to the means for improving cycle performance (such as heat pumps, multistaging, and rotary evaporators), and to system concepts offering promise for future development. Vacuum distillation offers lower power consumption, at some increase in system complexity; air evaporation distillation is capable of providing higher water recovery efficiency, which could offset the lower power consumption advantage of vacuum distillation for long-duration missions.
Technical Paper

Collection and Chemical Analysis of Reclaimed Water and Condensate from the Mir Space Station

1996-07-01
961569
Potable- and hygiene-quality water will be supplied to crews on the International Space Station through the recovery and purification of spacecraft wastewaters, including humidity condensate, urine, and wash water. Contaminants released into the cabin air from human metabolism, hardware offgassing, flight experiments, and routine operations will be present in spacecraft humidity condensate; normal constituents of urine and bathing water will be present in urine and untreated wash water. This report describes results from detailed analyses of Mir reclaimed potable water, ground-supplied water, and humidity condensate. These results are being used to develop and test water recycling and monitoring systems for the International Space Station (ISS); to evaluate the efficiency of the Mir water processors; and to determine the potability of the recycled water on board.
Technical Paper

A Total Organic Carbon Analyzer for Space Potable Water Systems

1996-07-01
961570
A Total Organic Carbon (TOC) Analyzer has been developed for a Life Sciences Risk Mitigation Flight Experiment to be conducted on Spacehab and the Russian space station, Mir. Initial launch is scheduled for December 1996 (flight STS-81). The analyzer will be tested on the Orbiter in the Spacehab module, including when the Orbiter is docked at the Mir space station. The analyzer is scheduled to be launched again in May 1997 (STS-84) when it will be transferred to Mir. During both flights the analyzer will measure the quality of recycled and ground-supplied potable water on the space station. Samples will be archived for later return to the ground, where they will be analyzed for comparison to in-flight results. Water test samples of known composition, brought up with the analyzer, also will be used to test its performance in microgravity. Ground-based analyses of duplicates of those test samples will be conducted concurrently with the in-flight analyses.
Technical Paper

Physical/Chemical Regenerative LSS for Planetary Habitations

1996-07-01
961549
A concept of LSS building for planetary stations is suggested on the basis of experience in the development, research and testing of physical/chemical regenerative LSS for long-duration ground-based bio-technical complexes of habitat support and for orbiting space stations. A gradual transition from integrated physical/chemical regenerative LSS to hybrid integrated physical/chemical and bio-technical LSS and finally to integrated bio-technical regenerative LSS, is suggested. It is shown that at all phases of integrated LSS development, the systems based on physical/chemical processes will be critical for correlating the interfaces between the biological components that process the products obtained in the bio-components, and enabling the vitality of integrated LSS under emergency situations. The interface of integrated LSS with base power supply system is outlined.
Technical Paper

Water Supply Based on Water Reclamation from Humidity Condensate and Urine on a Space Station

1996-07-01
961408
The paper reviews an integrated system for space station water supply based on a combination of water recovery systems and a water resupply system. The water balance data and system performance data in long-duration operation on the Mir space station are presented. A water supply concept for the Russian's segment (RS) of the International Space Station (ISS) is substantiated.
Technical Paper

Further Characterization and Multifiltration Treatment of Shuttle Humidity Condensate

1995-07-01
951685
On the International Space Station (ISS), humidity condensate will be collected from the atmosphere and treated by multifiltration to produce potable water for use by the crews. Ground-based development tests have demonstrated that multifiltration beds filled with a series of ion-exchange resins and activated carbons can remove many inorganic and organic contaminants effectively from wastewaters. As a precursor to the use of this technology on the ISS, a demonstration of multifiltration treatment under microgravity conditions was undertaken. On the Space Shuttle, humidity condensate from cabin air is recovered in the atmosphere revitalization system, then stored and periodically vented to space vacuum. A Shuttle Condensate Adsorption Device (SCAD) containing sorbent materials similar to those planned for use on the ISS was developed and flown on STS-68 as a continuation of DSO 317, which was flown initially on STS-45 and STS-47.
Technical Paper

Microbiological Analysis of Water in Space

1995-07-01
951683
One of the proposed methods for monitoring the microbial quality of the water supply aboard the International Space Station is membrane filtration. We adapted this method for space flight by using an off-the-shelf filter unit developed by Millipore. This sealed unit allows liquid to be filtered through a 0.45 μm cellulose acetate filter that sits atop an absorbent pad to which growth medium is added. We combined a tetrazolium dye with R2A medium to allow microbial colonies to be seen easily, and modified the medium to remain stable over 70 weeks at 25°C. This hardware was assembled and tested in the laboratory and during parabolic flight; a modified version was then flown on STS-66. After the STS-66 mission, a back-up plastic syringe and an all-metal syringe pump were added to the kit, and the hardware was used successfully to evaluate water quality aboard the Russian Mir space station.
Technical Paper

Experience in Development and Operation of Systems for Water Recovery from Humidity Condensate for Space Stations

1995-07-01
951604
The paper analyzes and summarizes experience in developing and flight operation of the system for potable water recovery from humidity condensate. The system schematic and its hardware are reviewed. The system performance data on Salut and Mir space stations are presented. Succession to the development of a similar system for the International Space Station (ISS) service module is shown.
Technical Paper

A Concept of Lunar Base Regenerative Water Management System Construction

1995-07-01
951603
A concept of developing a regenerative water management system (RWMS) for first lunar base missions is reviewed. The principal feature of the concept proposed is the maximum possible unification of RWMS for long-duration orbiting station and a lunar base with due regard to possible modification of the hardware for lunar gravity conditions. The paper is based on the expertise in research, development, testing and flight operation of RWMS in Russia. An upgraded RWMS of the International Space Station may be used for first lunar missions.
Technical Paper

Systems for Water Reclamation from Humidity Condensate and Urine for Space Station

1994-06-01
941536
This paper deals with water reclamation from humidity condensate and urine schematics and processes realized on orbital space stations Salut and Mir. The results of research in updated processes and schematics for condensate separation, purification and distillation with heat energy recovery are described. It is shown that the processes and hardware make possible to reduce energy demand and the weight of the water recovery systems under operation on space stations.
Technical Paper

Evaluation of Methods for Remediating Biofilms in Spacecraft Potable Water Systems

1994-06-01
941388
Controlling microbial growth and biofilm formation in spacecraft water-distribution systems is necessary to protect the health of the crew. Methods to decontaminate the water system in flight may be needed to support long-term missions. We evaluated the ability of iodine and ozone to kill attached bacteria and remove biofilms formed on stainless steel coupons. The biofilms were developed by placing the coupons in a manifold attached to the effluent line of a simulated spacecraft water-distribution system. After biofilms were established, the coupons were removed and placed in a treatment manifold in a separate water treatment system where they were exposed to the chemical treatments for various periods. Disinfection efficiency over time was measured by counting the bacteria that could be recovered from the coupons using a sonication and plate count technique. Scanning electron microscopy was also used to determine whether the treatments actually removed the biofilm.
Technical Paper

GC/MS and CE Methods for the Analysis of Trace Organic Acids in Reclaimed Water Supplies

1994-06-01
941392
The objective of this study was to investigate combining GC/MS and CE methods to allow sub-mg/L levels of organic acids to be determined in various water samples. This study also served as a basis for evaluating these instruments for in-flight spacecraft water-quality monitoring and to help determine the modifications needed to convert terrestrial hardware for use in microgravity environments. This paper reports on current GC/MS and CE method development and data generated from some recent spacecraft-related water samples. Plans for further method development are also discussed.
Technical Paper

Depletion of Biocidal Iodine in a Stainless Steel Water System

1994-06-01
941391
Iodine depletion in a simulated water storage tank and distribution system was examined to support a larger research program aimed at developing disinfection methods for spacecraft potable water systems. The main objective of this study was to determine the rate of iodine depletion with respect to the surface area of the stainless steel components contacting iodinated water. Two model configurations were tested. The first, representing a storage and distribution system, consisted of a stainless steel bellows tank, a coil of stainless steel tubing and valves to isolate the components. The second represented segments of a water distribution system and consisted of eight individual lengths of 21-6-9 stainless tubing similar to that used in the Shuttle Orbiter. The tubing has a relatively high and constant surface area to volume ratio (S/V) and the bellows tank a lower and variable S/V.
Technical Paper

Advanced Development of the Regenerative Microbial Check Valve

1993-07-01
932175
The Microbial Check Valve (MCV) is a reloadable flow-through canister containing iodinated ion exchange resin, which is used aboard the Shuttle Orbiter as a disinfectant to maintain water potability. The MCV exhibits a significant contact kill and imparts a biocidal residual I2 concentration to the effluent. MCVs in current use have nominal 30 day lives. MCVs baselined for Space Station Freedom will have 90 day lives, and will require replacement 120 times over 30 years. Means to extend MCV life are desirable to minimize resupply penalties. New technology has been developed for fully autonomous in situ regeneration of an expended MCV canister. The Regenerative Microbial Check Valve (RMCV) consists of an MCV, a packed bed of crystalline I2, a flow diverter valve, an in-line iodine monitor and a microcontroller. During regeneration, flow is directed first through the packed I2 bed and then into the MCV where the resin is replenished.
Technical Paper

Characterization of Spacecraft Humidity Condensate

1993-07-01
932176
When construction of Space Station Freedom reaches the Permanent Manned Capability stage, plans call for the Water Recovery and Management Subsystem to treat distilled urine, spent hygiene water, and humidity condensate in order to reclaim water of potable quality. The reclamation technologies currently baselined to process these wastewaters include adsorption, ion exchange, catalytic oxidation, and disinfection. To ensure that baselined technologies will be able to effectively remove those compounds that present health risks to the crew, the National Research Council has recommended that additional information be gathered on specific contaminants in wastewaters representative of those to be encountered on Space Station. This paper reports the efforts by the Water and Food Analytical Laboratory at the Johnson Space Center to enlarge the database of potential contaminants in humidity condensate.
Technical Paper

A Physical/Chemical System for Water and Atmosphere Recovery Aboard a Space Station

1993-07-01
932077
The paper deals with the problems of development of physico-chemical systems for water recovery and atmosphere revitalization for long-duration space stations. Schematics of regenerative life support systems featuring a high degree of closure and biotechnological components are presented. A year-long experiment has proved the possibility for Man to stay in a closed artificial environment for a long time by consuming substances regenerated by physico-chemical means from the end products of life. A complex of the life support systems (LSS) on Mir space station allowing for oxygen and 90% water recovery as well as its future updating is considered.
X